首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   95篇
  免费   8篇
  2021年   3篇
  2020年   1篇
  2019年   2篇
  2018年   3篇
  2017年   4篇
  2016年   4篇
  2015年   6篇
  2014年   3篇
  2013年   9篇
  2012年   7篇
  2011年   14篇
  2010年   2篇
  2009年   4篇
  2008年   8篇
  2007年   1篇
  2006年   7篇
  2005年   2篇
  2004年   3篇
  2003年   4篇
  2002年   2篇
  2001年   3篇
  2000年   4篇
  1999年   1篇
  1993年   1篇
  1992年   1篇
  1991年   1篇
  1984年   1篇
  1982年   1篇
  1972年   1篇
排序方式: 共有103条查询结果,搜索用时 328 毫秒
51.
Parides ascanius (Lepidoptera: Papilionidae) is a butterfly endemic to the sand forests (“restingas”) of one of the most populated areas of Brazil (from Rio de Janeiro state to South Espírito Santo state), and was the first invertebrate officially recognized as being threatened in Brazil. Here we present a panel of eight polymorphic microsatellite loci and partial sequences of mitochondrial gene COI aiming to characterize this butterfly’s genetic diversity and understand its distribution among the extant populations. We estimate FST metrics, migration rates, cluster assignment, and spatial structure of genetic diversity. FST and statistics indicate low genetic structure and no evidence for endogamy, with all populations connected by high migration rates. Seven populations have low permanence rates (68–75 %) with increased migration probabilities for all populations. One population displays higher permanence rate (87.7 %), as the metropolitan matrix isolates it. Spatial analysis shows a global structure around the city of Rio de Janeiro and the Guanabara Bay; assignment analysis recovers six clusters evenly spread among sampled populations. These findings are consistent with a natural scenario of metapopulation dynamics for P. ascanius, with low genetic diversity and no endogamy, but progressively isolated by the metropolitan matrix. Conservation efforts should focus in connecting the isolated population, broaden the searches for new populations, and preserve all extant habitat patches where P. ascanius still occurs.  相似文献   
52.
Intrinsic flexibility is closely related to protein function, and a plethora of important regulatory proteins have been found to be flexible, multi-domain or even intrinsically disordered. On the one hand, understanding such systems depends on how these proteins behave in solution. On the other, small-angle X-ray scattering (SAXS) is a technique that fulfills the requirements to study protein structure and dynamics relatively quickly with few experimental limitations. Molecular chaperones from Hsp70 and Hsp90 families are multi-domain proteins containing flexible and/or disordered regions that play central roles in cellular proteostasis. Here, we review the structure and function of these proteins by SAXS. Our general approach includes the use of SAXS data to determine size and shape parameters, as well as protein shape reconstruction and their validation by using accessory biophysical tools. Some remarkable examples are presented that exemplify the potential of the SAXS technique. Protein structure can be determined in solution even at limiting protein concentrations (for example, human mortalin, a mitochondrial Hsp70 chaperone). The protein organization, flexibility and function (for example, the J-protein co-chaperones), oligomeric status, domain organization, and flexibility (for the Hsp90 chaperone and the Hip and Hep1 co-chaperones) may also be determined. Lastly, the shape, structural conservation, and protein dynamics (for the Hsp90 chaperone and both p23 and Aha1 co-chaperones) may be studied by SAXS. We believe this review will enhance the application of the SAXS technique to the study of the molecular chaperones.  相似文献   
53.
Corals create complex reef structures that provide both habitat and food for many fish species. Because of numerous natural and anthropogenic threats, many coral reefs are currently being degraded, endangering the fish assemblages they support. Coral reef restoration, an active ecological management tool, may help reverse some of the current trends in reef degradation through the transplantation of stony corals. Although restoration techniques have been extensively reviewed in relation to coral survival, our understanding of the effects of adding live coral cover and complexity on fishes is in its infancy with a lack of scientifically validated research. This study reviews the limited data on reef restoration and fish assemblages, and complements this with the more extensive understanding of complex interactions between natural reefs and fishes and how this might inform restoration efforts. It also discusses which key fish species or functional groups may promote, facilitate or inhibit restoration efforts and, in turn, how restoration efforts can be optimised to enhance coral fish assemblages. By highlighting critical knowledge gaps in relation to fishes and restoration interactions, the study aims to stimulate research into the role of reef fishes in restoration projects. A greater understanding of the functional roles of reef fishes would also help inform whether restoration projects can return fish assemblages to their natural compositions or whether alternative species compositions develop, and over what timeframe. Although alleviation of local and global reef stressors remains a priority, reef restoration is an important tool; an increased understanding of the interactions between replanted corals and the fishes they support is critical for ensuring its success for people and nature.  相似文献   
54.
55.
Protein folding, refolding and degradation are essential for cellular life and are regulated by protein homeostatic processes such those that involve the molecular chaperone DnaK/Hsp70 and its co-chaperone DnaJ. Hsp70 action is initiated when proteins from the DnaJ family bind an unfolded protein for delivery purposes. In eukaryotes, the DnaJ family can be divided into two main groups, Type I and Type II, represented by yeast cytosolic Ydj1 and Sis1, respectively. Although sharing some unique features both members of the DnaJ family, Ydj1 and Sis1 are structurally and functionally distinct as deemed by previous studies, including the observation that their central domains carry the structural and functional information even in switched chimeras. In this study, we combined several biophysical tools for evaluating the stability of Sis1 and mutants that had the central domains (named Gly/Met rich domain and C-terminal Domain I) deleted or switched to those of Ydj1 to gain insight into the role of these regions in the structure and function of Sis1. The mutants retained some functions similar to full length wild-type Sis1, however they were defective in others. We found that: 1) Sis1 unfolds in at least two steps as follows: folded dimer to partially folded monomer and then to an unfolded monomer. 2) The Gly/Met rich domain had intrinsically disordered characteristics and its deletion had no effect on the conformational stability of the protein. 3) The deletion of the C-terminal Domain I perturbed the stability of the dimer. 4) Exchanging the central domains perturbed the conformational stability of the protein. Altogether, our results suggest the existence of two similar subdomains in the C-terminal domain of DnaJ that could be important for stabilizing each other in order to maintain a folded substrate-binding site as well as the dimeric state of the protein.  相似文献   
56.
Mycelium growth rates, biomass concentration (estimated as glucosamine content) and laccase and endoglucanase secretion were monitored during solid state fermentation (SSF) of wheat straw (WS), reed grass (RG) and bean stalk (BS) residues by Lentinula edodes strains 119, 121, and 122. In a first experiment, these strains were subjected to screening regarding their growth rates and biomass yield, where strain 121 proved to be the fastest colonizer. However, the greater biomass yield at the end of colonization was demonstrated by strain 122 on BS (465.93 mg g−1 d.w.). In a second experiment, growth characters, as well as endoglucanase and laccase production patterns of the selected strains 121 and 122 were monitored at three intervals i.e., at 33, 66, and 100% of substrate colonization. BS furnished the highest endoglucanase production for strain 121, while RG for strain 122. A strain and substrate-dependent behaviour of the enzyme secretion was detected, with strain 122 presenting maximal endoglucanase activity in all substrates at the initial (33%) and final (100%) stages of colonization (0.64–0.90 and 0.79–0.97 U g−1, respectively). However, in strain 121 the peak of endoglucanase production was detected in the early stages of colonization (at 33% on WS and at 66% on RG and BS). Laccase activity showed increased values (maxima on WS, 353.68 and 548.67 U g−1 by strains 121 and 122, respectively) at 66% of colonization. Correlation analysis of growth data demonstrated negative relations between growth rate and biomass yield and between laccase and endoglucanase activities on WS and RG substrates fermented by strain 122. Finally, possible relations of growth parameters with nutritional constituents of the substrates were investigated.  相似文献   
57.
Cargo proteins of the biosynthetic secretory pathway are folded in the endoplasmic reticulum (ER) and proceed to the trans Golgi network for sorting and targeting to the apical or basolateral sides of the membrane, where they exert their function. These processes depend on diverse protein domains. Here, we used CD39 (NTPdase1), a modulator of thrombosis and inflammation, which contains an extracellular and two transmembrane domains (TMDs), as a model protein to address comprehensively the role of native TMDs in folding, polarized transport and biological activity. In MDCK cells, CD39 exits Golgi dynamin-dependently and is targeted to the apical side of the membrane. Although the N-terminal TMD possesses an apical targeting signal, the N- and C-terminal TMDs are not required for apical targeting of CD39. Folding and transport to the plasma membrane relies only on the C-terminal TMD, while the N-terminal one is redundant. Nevertheless, both N- and C-terminal anchoring as well as genuine TMDs are critical for optimal enzymatic activity and activation by cholesterol. We conclude therefore that TMDs are not just mechanical linkers between proteins and membranes but are also able to control folding and sorting, as well as biological activity via sensing components of lipid bilayers.  相似文献   
58.
Spinocerebellar ataxia type 7 (SCA7) is caused by a toxic polyglutamine (polyQ) expansion in the N-terminus of the protein ataxin-7. Ataxin-7 has a known function in the histone acetylase complex, Spt/Ada/Gcn5 acetylase (STAGA) chromatin-remodeling complex. We hypothesized that some histone deacetylase (HDAC) family members would impact the posttranslational modification of normal and expanded ataxin-7 and possibly modulate ataxin-7 function or neurotoxicity associated with the polyQ expansion. Interestingly, when we coexpressed each HDAC family member in the presence of ataxin-7 we found that HDAC3 increased the posttranslational modification of normal and expanded ataxin-7. Specifically, HDAC3 stabilized ataxin-7 and increased modification of the protein. Further, HDAC3 physically interacts with ataxin-7. The physical interaction of HDAC3 with normal and polyQ-expanded ataxin-7 affects the toxicity in a polyQ-dependent manner. We detect robust HDAC3 expression in neurons and glia in the cerebellum and an increase in the levels of HDAC3 in SCA7 mice. Consistent with this we found altered lysine acetylation levels and deacetylase activity in the brains of SCA7 transgenic mice. This study implicates HDAC3 and ataxin-7 interaction as a target for therapeutic intervention in SCA7, adding to a growing list of neurodegenerative diseases that may be treated by HDAC inhibitors.  相似文献   
59.
We present a minimal model of plasma membrane heterogeneity that combines criticality with connectivity to cortical cytoskeleton. The development of this model was motivated by recent observations of micron-sized critical fluctuations in plasma membrane vesicles that are detached from their cortical cytoskeleton. We incorporate criticality using a conserved order parameter Ising model coupled to a simple actin cytoskeleton interacting through point-like pinning sites. Using this minimal model, we recapitulate several experimental observations of plasma membrane raft heterogeneity. Small (r ∼ 20 nm) and dynamic fluctuations at physiological temperatures arise from criticality. Including connectivity to the cortical cytoskeleton disrupts large fluctuations, prevents macroscopic phase separation at low temperatures (T ≤ 22°C), and provides a template for long-lived fluctuations at physiological temperature (T = 37°C). Cytoskeleton-stabilized fluctuations produce significant barriers to the diffusion of some membrane components in a manner that is weakly dependent on the number of pinning sites and strongly dependent on criticality. More generally, we demonstrate that critical fluctuations provide a physical mechanism for organizing and spatially segregating membrane components by providing channels for interaction over large distances.  相似文献   
60.
Osteoarthritis (OA) is a debilitating disease of the joints characterized by cartilage degradation but to date there is no available pharmacological treatment to inhibit disease progression neither is there any available biomarker to predict its development. In the present study, we examined the expression level and possible involvement of novel cell–ECM adhesion-related molecules such as Iintegrin Linked Kinase (ILK), PINCH, parvin, Mig-2 and Migfilin in OA pathogenesis using primary human articular chondrocytes from healthy individuals and OA patients. Our findings show that only ILK and Migfilin were upregulated in OA compared to the normal chondrocytes. Interestingly, Migfilin silencing in OA chondrocytes rather exacerbated than ameliorated the osteoarthritic phenotype, as it resulted in even higher levels of catabolic and hypertrophic markers while at the same time induced reduction in ECM molecules such as aggrecan. Furthermore, we also provide a link between Migfilin and β-catenin activation in OA chondrocytes, showing Migfilin to be inversely correlated with β-catenin. Thus, the present study emphasizes for the first time to our knowledge the role of Migfilin in OA and highlights the importance of cell–ECM adhesion proteins in OA pathogenesis.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号